ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.13018
17
0

Adversarial Robust Low Rank Matrix Estimation: Compressed Sensing and Matrix Completion

25 October 2020
Takeyuki Sasai
Hironori Fujisawa
ArXivPDFHTML
Abstract

We consider robust low rank matrix estimation as a trace regression when outputs are contaminated by adversaries. The adversaries are allowed to add arbitrary values to arbitrary outputs. Such values can depend on any samples. We deal with matrix compressed sensing, including lasso as a partial problem, and matrix completion, and then we obtain sharp estimation error bounds. To obtain the error bounds for different models such as matrix compressed sensing and matrix completion, we propose a simple unified approach based on a combination of the Huber loss function and the nuclear norm penalization, which is a different approach from the conventional ones. Some error bounds obtained in the present paper are sharper than the past ones.

View on arXiv
Comments on this paper