ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12678
31
2

Super-Resolution Reconstruction of Interval Energy Data

23 October 2020
Jieyi Lu
Baihong Jin
ArXiv (abs)PDFHTML
Abstract

High-resolution data are desired in many data-driven applications; however, in many cases only data whose resolution is lower than expected are available due to various reasons. It is then a challenge how to obtain as much useful information as possible from the low-resolution data. In this paper, we target interval energy data collected by Advanced Metering Infrastructure (AMI), and propose a Super-Resolution Reconstruction (SRR) approach to upsample low-resolution (hourly) interval data into higher-resolution (15-minute) data using deep learning. Our preliminary results show that the proposed SRR approaches can achieve much improved performance compared to the baseline model.

View on arXiv
Comments on this paper