ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12101
18
24

Fast and Smooth Interpolation on Wasserstein Space

22 October 2020
Sinho Chewi
Julien Clancy
Thibaut Le Gouic
Philippe Rigollet
George Stepaniants
Austin J. Stromme
ArXivPDFHTML
Abstract

We propose a new method for smoothly interpolating probability measures using the geometry of optimal transport. To that end, we reduce this problem to the classical Euclidean setting, allowing us to directly leverage the extensive toolbox of spline interpolation. Unlike previous approaches to measure-valued splines, our interpolated curves (i) have a clear interpretation as governing particle flows, which is natural for applications, and (ii) come with the first approximation guarantees on Wasserstein space. Finally, we demonstrate the broad applicability of our interpolation methodology by fitting surfaces of measures using thin-plate splines.

View on arXiv
Comments on this paper