ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12060
19
57

Analysis of three dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis

3 October 2020
Hongwei Guo
X. Zhuang
Pengwan Chen
N. Alajlan
Timon Rabczuk
ArXivPDFHTML
Abstract

In this work, we present a deep collocation method for three dimensional potential problems in nonhomogeneous media. This approach utilizes a physics informed neural network with material transfer learning reducing the solution of the nonhomogeneous partial differential equations to an optimization problem. We tested different cofigurations of the physics informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilised for nonhomogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations.

View on arXiv
Comments on this paper