ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11575
15
73

Face Hallucination via Split-Attention in Split-Attention Network

22 October 2020
T. Lu
Yuanzhi Wang
Yanduo Zhang
Yu Wang
Wei Liu
Zhongyuan Wang
Junjun Jiang
    SupR
    CVBM
ArXivPDFHTML
Abstract

Recently, convolutional neural networks (CNNs) have been widely employed to promote the face hallucination due to the ability to predict high-frequency details from a large number of samples. However, most of them fail to take into account the overall facial profile and fine texture details simultaneously, resulting in reduced naturalness and fidelity of the reconstructed face, and further impairing the performance of downstream tasks (e.g., face detection, facial recognition). To tackle this issue, we propose a novel external-internal split attention group (ESAG), which encompasses two paths responsible for facial structure information and facial texture details, respectively. By fusing the features from these two paths, the consistency of facial structure and the fidelity of facial details are strengthened at the same time. Then, we propose a split-attention in split-attention network (SISN) to reconstruct photorealistic high-resolution facial images by cascading several ESAGs. Experimental results on face hallucination and face recognition unveil that the proposed method not only significantly improves the clarity of hallucinated faces, but also encourages the subsequent face recognition performance substantially. Codes have been released at https://github.com/mdswyz/SISN-Face-Hallucination.

View on arXiv
Comments on this paper