ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11537
51
4

On Mean Estimation for Heteroscedastic Random Variables

22 October 2020
Luc Devroye
Silvio Lattanzi
Gabor Lugosi
Nikita Zhivotovskiy
ArXiv (abs)PDFHTML
Abstract

We study the problem of estimating the common mean μ\muμ of nnn independent symmetric random variables with different and unknown standard deviations σ1≤σ2≤⋯≤σn\sigma_1 \le \sigma_2 \le \cdots \le\sigma_nσ1​≤σ2​≤⋯≤σn​. We show that, under some mild regularity assumptions on the distribution, there is a fully adaptive estimator μ^\widehat{\mu}μ​ such that it is invariant to permutations of the elements of the sample and satisfies that, up to logarithmic factors, with high probability, \[ |\widehat{\mu} - \mu| \lesssim \min\left\{\sigma_{m^*}, \frac{\sqrt{n}}{\sum_{i = \sqrt{n}}^n \sigma_i^{-1}} \right\}~, \] where the index m∗≲nm^* \lesssim \sqrt{n}m∗≲n​ satisfies m∗≈σm∗∑i=m∗nσi−1m^* \approx \sqrt{\sigma_{m^*}\sum_{i = m^*}^n\sigma_i^{-1}}m∗≈σm∗​∑i=m∗n​σi−1​​.

View on arXiv
Comments on this paper