ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11443
11
93

Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online Algorithms

22 October 2020
Alexander Wei
Fred Zhang
ArXivPDFHTML
Abstract

We study the problem of improving the performance of online algorithms by incorporating machine-learned predictions. The goal is to design algorithms that are both consistent and robust, meaning that the algorithm performs well when predictions are accurate and maintains worst-case guarantees. Such algorithms have been studied in a recent line of works due to Lykouris and Vassilvitskii (ICML '18) and Purohit et al (NeurIPS '18). They provide robustness-consistency trade-offs for a variety of online problems. However, they leave open the question of whether these trade-offs are tight, i.e., to what extent to such trade-offs are necessary. In this paper, we provide the first set of non-trivial lower bounds for competitive analysis using machine-learned predictions. We focus on the classic problems of ski-rental and non-clairvoyant scheduling and provide optimal trade-offs in various settings.

View on arXiv
Comments on this paper