ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11387
6
6

Kwame: A Bilingual AI Teaching Assistant for Online SuaCode Courses

22 October 2020
George Boateng
    AI4Ed
ArXivPDFHTML
Abstract

Introductory hands-on courses such as our smartphone-based coding course, SuaCode require a lot of support for students to accomplish learning goals. Online environments make it even more difficult to get assistance especially more recently because of COVID-19. Given the multilingual context of SuaCode students - learners across 42 African countries that are mostly Anglophone or Francophone - in this work, we developed a bilingual Artificial Intelligence (AI) Teaching Assistant (TA) - Kwame - that provides answers to students' coding questions from SuaCode courses in English and French. Kwame is a Sentence-BERT (SBERT)-based question-answering (QA) system that we trained and evaluated offline using question-answer pairs created from the course's quizzes, lesson notes and students' questions in past cohorts. Kwame finds the paragraph most semantically similar to the question via cosine similarity. We compared the system with TF-IDF and Universal Sentence Encoder. Our results showed that fine-tuning on the course data and returning the top 3 and 5 answers improved the accuracy results. Kwame will make it easy for students to get quick and accurate answers to questions in SuaCode courses.

View on arXiv
Comments on this paper