62
38

TweetBERT: A Pretrained Language Representation Model for Twitter Text Analysis

Abstract

Twitter is a well-known microblogging social site where users express their views and opinions in real-time. As a result, tweets tend to contain valuable information. With the advancements of deep learning in the domain of natural language processing, extracting meaningful information from tweets has become a growing interest among natural language researchers. Applying existing language representation models to extract information from Twitter does not often produce good results. Moreover, there is no existing language representation models for text analysis specific to the social media domain. Hence, in this article, we introduce two TweetBERT models, which are domain specific language presentation models, pre-trained on millions of tweets. We show that the TweetBERT models significantly outperform the traditional BERT models in Twitter text mining tasks by more than 7% on each Twitter dataset. We also provide an extensive analysis by evaluating seven BERT models on 31 different datasets. Our results validate our hypothesis that continuously training language models on twitter corpus help performance with Twitter.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.