ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10111
20
12

JUNLP@Dravidian-CodeMix-FIRE2020: Sentiment Classification of Code-Mixed Tweets using Bi-Directional RNN and Language Tags

20 October 2020
S. Mahata
Dipankar Das
Sivaji Bandyopadhyay
ArXivPDFHTML
Abstract

Sentiment analysis has been an active area of research in the past two decades and recently, with the advent of social media, there has been an increasing demand for sentiment analysis on social media texts. Since the social media texts are not in one language and are largely code-mixed in nature, the traditional sentiment classification models fail to produce acceptable results. This paper tries to solve this very research problem and uses bi-directional LSTMs along with language tagging, to facilitate sentiment tagging of code-mixed Tamil texts that have been extracted from social media. The presented algorithm, when evaluated on the test data, garnered precision, recall, and F1 scores of 0.59, 0.66, and 0.58 respectively.

View on arXiv
Comments on this paper