ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08756
6
5

CUSATNLP@HASOC-Dravidian-CodeMix-FIRE2020:Identifying Offensive Language from ManglishTweets

17 October 2020
Sara Renjit
S. M. Idicula
ArXivPDFHTML
Abstract

With the popularity of social media, communications through blogs, Facebook, Twitter, and other plat-forms have increased. Initially, English was the only medium of communication. Fortunately, now we can communicate in any language. It has led to people using English and their own native or mother tongue language in a mixed form. Sometimes, comments in other languages have English transliterated format or other cases; people use the intended language scripts. Identifying sentiments and offensive content from such code mixed tweets is a necessary task in these times. We present a working model submitted for Task2 of the sub-track HASOC Offensive Language Identification- DravidianCodeMix in Forum for Information Retrieval Evaluation, 2020. It is a message level classification task. An embedding model-based classifier identifies offensive and not offensive comments in our approach. We applied this method in the Manglish dataset provided along with the sub-track.

View on arXiv
Comments on this paper