ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08518
66
41
v1v2 (latest)

Adaptive Feature Selection for End-to-End Speech Translation

16 October 2020
Biao Zhang
Ivan Titov
Barry Haddow
Rico Sennrich
ArXiv (abs)PDFHTML
Abstract

Information in speech signals is not evenly distributed, making it an additional challenge for end-to-end (E2E) speech translation (ST) to learn to focus on informative features. In this paper, we propose adaptive feature selection (AFS) for encoder-decoder based E2E ST. We first pre-train an ASR encoder and apply AFS to dynamically estimate the importance of each encoded speech feature to SR. A ST encoder, stacked on top of the ASR encoder, then receives the filtered features from the (frozen) ASR encoder. We take L0DROP (Zhang et al., 2020) as the backbone for AFS, and adapt it to sparsify speech features with respect to both temporal and feature dimensions. Results on LibriSpeech En-Fr and MuST-C benchmarks show that AFS facilitates learning of ST by pruning out ~84% temporal features, yielding an average translation gain of ~1.3-1.6 BLEU and a decoding speedup of ~1.4x. In particular, AFS reduces the performance gap compared to the cascade baseline, and outperforms it on LibriSpeech En-Fr with a BLEU score of 18.56 (without data augmentation)

View on arXiv
Comments on this paper