ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.07074
6
18

Summarize, Outline, and Elaborate: Long-Text Generation via Hierarchical Supervision from Extractive Summaries

14 October 2020
Xiaofei Sun
Zijun Sun
Yuxian Meng
Jiwei Li
Chun Fan
ArXivPDFHTML
Abstract

The difficulty of generating coherent long texts lies in the fact that existing models overwhelmingly focus on predicting local words, and cannot make high level plans on what to generate or capture the high-level discourse dependencies between chunks of texts. Inspired by human writing processes, where a list of bullet points or a catalog is first outlined, and then each bullet point is expanded to form the whole article, we propose {\it SOE}, a pipelined system that involves of summarizing, outlining and elaborating for long text generation: the model first outlines the summaries for different segments of long texts, and then elaborates on each bullet point to generate the corresponding segment. To avoid the labor-intensive process of summary soliciting, we propose the {\it reconstruction} strategy, which extracts segment summaries in an unsupervised manner by selecting its most informative part to reconstruct the segment. The proposed generation system comes with the following merits: (1) the summary provides high-level guidance for text generation and avoids the local minimum of individual word predictions; (2) the high-level discourse dependencies are captured in the conditional dependencies between summaries and are preserved during the summary expansion process and (3) additionally, we are able to consider significantly more contexts by representing contexts as concise summaries. Extensive experiments demonstrate that SOE produces long texts with significantly better quality, along with faster convergence speed.

View on arXiv
Comments on this paper