ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06402
21
23

Which Model to Transfer? Finding the Needle in the Growing Haystack

13 October 2020
Cédric Renggli
André Susano Pinto
Luka Rimanic
J. Puigcerver
C. Riquelme
Ce Zhang
Mario Lucic
ArXivPDFHTML
Abstract

Transfer learning has been recently popularized as a data-efficient alternative to training models from scratch, in particular for computer vision tasks where it provides a remarkably solid baseline. The emergence of rich model repositories, such as TensorFlow Hub, enables the practitioners and researchers to unleash the potential of these models across a wide range of downstream tasks. As these repositories keep growing exponentially, efficiently selecting a good model for the task at hand becomes paramount. We provide a formalization of this problem through a familiar notion of regret and introduce the predominant strategies, namely task-agnostic (e.g. ranking models by their ImageNet performance) and task-aware search strategies (such as linear or kNN evaluation). We conduct a large-scale empirical study and show that both task-agnostic and task-aware methods can yield high regret. We then propose a simple and computationally efficient hybrid search strategy which outperforms the existing approaches. We highlight the practical benefits of the proposed solution on a set of 19 diverse vision tasks.

View on arXiv
Comments on this paper