ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06213
11
3

KLearn: Background Knowledge Inference from Summarization Data

13 October 2020
Maxime Peyrard
Robert West
ArXivPDFHTML
Abstract

The goal of text summarization is to compress documents to the relevant information while excluding background information already known to the receiver. So far, summarization researchers have given considerably more attention to relevance than to background knowledge. In contrast, this work puts background knowledge in the foreground. Building on the realization that the choices made by human summarizers and annotators contain implicit information about their background knowledge, we develop and compare techniques for inferring background knowledge from summarization data. Based on this framework, we define summary scoring functions that explicitly model background knowledge, and show that these scoring functions fit human judgments significantly better than baselines. We illustrate some of the many potential applications of our framework. First, we provide insights into human information importance priors. Second, we demonstrate that averaging the background knowledge of multiple, potentially biased annotators or corpora greatly improves summary-scoring performance. Finally, we discuss potential applications of our framework beyond summarization.

View on arXiv
Comments on this paper