ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.03844
17
4

Improve Adversarial Robustness via Weight Penalization on Classification Layer

8 October 2020
Cong Xu
Dan Li
Min Yang
    AAML
ArXivPDFHTML
Abstract

It is well-known that deep neural networks are vulnerable to adversarial attacks. Recent studies show that well-designed classification parts can lead to better robustness. However, there is still much space for improvement along this line. In this paper, we first prove that, from a geometric point of view, the robustness of a neural network is equivalent to some angular margin condition of the classifier weights. We then explain why ReLU type function is not a good choice for activation under this framework. These findings reveal the limitations of the existing approaches and lead us to develop a novel light-weight-penalized defensive method, which is simple and has a good scalability. Empirical results on multiple benchmark datasets demonstrate that our method can effectively improve the robustness of the network without requiring too much additional computation, while maintaining a high classification precision for clean data.

View on arXiv
Comments on this paper