ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.03749
22
4

Tatum-Level Drum Transcription Based on a Convolutional Recurrent Neural Network with Language Model-Based Regularized Training

8 October 2020
Ryoto Ishizuka
Ryo Nishikimi
Eita Nakamura
Kazuyoshi Yoshii
ArXivPDFHTML
Abstract

This paper describes a neural drum transcription method that detects from music signals the onset times of drums at the tatum\textit{tatum}tatum level, where tatum times are assumed to be estimated in advance. In conventional studies on drum transcription, deep neural networks (DNNs) have often been used to take a music spectrogram as input and estimate the onset times of drums at the frame\textit{frame}frame level. The major problem with such frame-to-frame DNNs, however, is that the estimated onset times do not often conform with the typical tatum-level patterns appearing in symbolic drum scores because the long-term musically meaningful structures of those patterns are difficult to learn at the frame level. To solve this problem, we propose a regularized training method for a frame-to-tatum DNN. In the proposed method, a tatum-level probabilistic language model (gated recurrent unit (GRU) network or repetition-aware bi-gram model) is trained from an extensive collection of drum scores. Given that the musical naturalness of tatum-level onset times can be evaluated by the language model, the frame-to-tatum DNN is trained with a regularizer based on the pretrained language model. The experimental results demonstrate the effectiveness of the proposed regularized training method.

View on arXiv
Comments on this paper