CNN feature spaces can be linearly mapped and consequently are often interchangeable. This equivalence holds across variations in architectures, training datasets, and network tasks. Specifically, we mapped between 10 image-classification CNNs and between 4 facial-recognition CNNs. When image embeddings generated by one CNN are transformed into embeddings corresponding to the feature space of a second CNN trained on the same task, their respective image classification or face verification performance is largely preserved. For CNNs trained to the same classes and sharing a common backend-logit (soft-max) architecture, a linear-mapping may always be calculated directly from the backend layer weights. However, the case of a closed-set analysis with perfect knowledge of classifiers is limiting. Therefore, empirical methods of estimating mappings are presented for both the closed-set image classification task and the open-set task of face recognition. The results presented expose the essentially interchangeable nature of CNNs embeddings for two important and common recognition tasks. The implications are far-reaching, suggesting an underlying commonality between representations learned by networks designed and trained for a common task. One practical implication is that face embeddings from some commonly used CNNs can be compared using these mappings.
View on arXiv