ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.02035
9
3

Sample weighting as an explanation for mode collapse in generative adversarial networks

5 October 2020
Aksel Wilhelm Wold Eide
Eilif Solberg
I. Kåsen
    GAN
ArXivPDFHTML
Abstract

Generative adversarial networks were introduced with a logistic MiniMax cost formulation, which normally fails to train due to saturation, and a Non-Saturating reformulation. While addressing the saturation problem, NS-GAN also inverts the generator's sample weighting, implicitly shifting emphasis from higher-scoring to lower-scoring samples when updating parameters. We present both theory and empirical results suggesting that this makes NS-GAN prone to mode dropping. We design MM-nsat, which preserves MM-GAN sample weighting while avoiding saturation by rescaling the MM-GAN minibatch gradient such that its magnitude approximates NS-GAN's gradient magnitude. MM-nsat has qualitatively different training dynamics, and on MNIST and CIFAR-10 it is stronger in terms of mode coverage, stability and FID. While the empirical results for MM-nsat are promising and favorable also in comparison with the LS-GAN and Hinge-GAN formulations, our main contribution is to show how and why NS-GAN's sample weighting causes mode dropping and training collapse.

View on arXiv
Comments on this paper