ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01897
44
2

PUM at SemEval-2020 Task 12: Aggregation of Transformer-based models' features for offensive language recognition

5 October 2020
P. Janiszewski
Mateusz Skiba
Urszula Waliñska
ArXiv (abs)PDFHTML
Abstract

In this paper, we describe the PUM team's entry to the SemEval-2020 Task 12. Creating our solution involved leveraging two well-known pretrained models used in natural language processing: BERT and XLNet, which achieve state-of-the-art results in multiple NLP tasks. The models were fine-tuned for each subtask separately and features taken from their hidden layers were combined and fed into a fully connected neural network. The model using aggregated Transformer features can serve as a powerful tool for offensive language identification problem. Our team was ranked 7th out of 40 in Sub-task C - Offense target identification with 64.727% macro F1-score and 64th out of 85 in Sub-task A - Offensive language identification (89.726% F1-score).

View on arXiv
Comments on this paper