ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01748
19
14

Policy Learning Using Weak Supervision

5 October 2020
Jingkang Wang
Hongyi Guo
Zhaowei Zhu
Yang Liu
    OffRL
ArXivPDFHTML
Abstract

Most existing policy learning solutions require the learning agents to receive high-quality supervision signals such as well-designed rewards in reinforcement learning (RL) or high-quality expert demonstrations in behavioral cloning (BC). These quality supervisions are usually infeasible or prohibitively expensive to obtain in practice. We aim for a unified framework that leverages the available cheap weak supervisions to perform policy learning efficiently. To handle this problem, we treat the "weak supervision" as imperfect information coming from a peer agent, and evaluate the learning agent's policy based on a "correlated agreement" with the peer agent's policy (instead of simple agreements). Our approach explicitly punishes a policy for overfitting to the weak supervision. In addition to theoretical guarantees, extensive evaluations on tasks including RL with noisy rewards, BC with weak demonstrations, and standard policy co-training show that our method leads to substantial performance improvements, especially when the complexity or the noise of the learning environments is high.

View on arXiv
Comments on this paper