ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01556
12
28

Reverse Operation based Data Augmentation for Solving Math Word Problems

4 October 2020
Qianying Liu
Wenyu Guan
Sujian Li
Fei Cheng
Daisuke Kawahara
Sadao Kurohashi
ArXivPDFHTML
Abstract

Automatically solving math word problems is a critical task in the field of natural language processing. Recent models have reached their performance bottleneck and require more high-quality data for training. We propose a novel data augmentation method that reverses the mathematical logic of math word problems to produce new high-quality math problems and introduce new knowledge points that can benefit learning the mathematical reasoning logic. We apply the augmented data on two SOTA math word problem solving models and compare our results with a strong data augmentation baseline. Experimental results show the effectiveness of our approach. We release our code and data at https://github.com/yiyunya/RODA.

View on arXiv
Comments on this paper