ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.00578
103
80
v1v2v3v4v5v6 (latest)

Understanding Self-supervised Learning with Dual Deep Networks

1 October 2020
Yuandong Tian
Lantao Yu
Xinlei Chen
Surya Ganguli
    SSL
ArXiv (abs)PDFHTMLGithub (293★)
Abstract

We propose a novel theoretical framework to understand self-supervised learning methods that employ dual pairs of deep ReLU networks (e.g., SimCLR, BYOL). First, we prove that in each SGD update of SimCLR, the weights at each layer are updated by a \emph{covariance operator} that specifically amplifies initial random selectivities that vary across data samples but survive averages over data augmentations, which we show leads to the emergence of hierarchical features, if the input data are generated from a hierarchical latent tree model. With the same framework, we also show analytically that BYOL works due to an implicit contrastive term, acting as an approximate covariance operator. The term is formed by the inter-play between the zero-mean operation of BatchNorm and the extra predictor in the online network. Extensive ablation studies justify our theoretical findings.

View on arXiv
Comments on this paper