33
0

Rain Code: Multi-Frame Based Forecasting Spatiotemporal Precipitation Using ConvLSTM

Abstract

Recently, flood damage has become a social problem owing to unexperienced weather conditions arising from climate change. An immediate response to heavy rain and high water levels is important for the mitigation of casualties and economic losses and also for rapid recovery. Spatiotemporal precipitation forecasts may enhance the accuracy of dam inflow prediction, more than 6 hours forward for flood damage mitigation. This paper proposes a rain-code approach for spatiotemporal precipitation forecasting. We propose a novel rainy feature that represents a temporal rainy process using multi-frame fusion for timestep reduction. We perform rain-code studies with various term ranges based on spatiotemporal precipitation forecasting using the standard ConvLSTM. We applied to a dam region within the Japanese rainy term hourly precipitation data, under 2006 to 2019 approximately 127 thousands hours, every year from May to October. We apply the radar analysis hourly data on the central broader region with an area of 136 x 148 km2 , based on new data fusion rain code with multi-frame sequences. Finally we got some evidences and capabilities for strengthen forecasting range.

View on arXiv
Comments on this paper