ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13655
11
48

Conversational Semantic Parsing

28 September 2020
Armen Aghajanyan
Jean Maillard
Akshat Shrivastava
K. Diedrick
Mike Haeger
Haoran Li
Yashar Mehdad
Ves Stoyanov
Anuj Kumar
M. Lewis
S. Gupta
ArXivPDFHTML
Abstract

The structured representation for semantic parsing in task-oriented assistant systems is geared towards simple understanding of one-turn queries. Due to the limitations of the representation, the session-based properties such as co-reference resolution and context carryover are processed downstream in a pipelined system. In this paper, we propose a semantic representation for such task-oriented conversational systems that can represent concepts such as co-reference and context carryover, enabling comprehensive understanding of queries in a session. We release a new session-based, compositional task-oriented parsing dataset of 20k sessions consisting of 60k utterances. Unlike Dialog State Tracking Challenges, the queries in the dataset have compositional forms. We propose a new family of Seq2Seq models for the session-based parsing above, which achieve better or comparable performance to the current state-of-the-art on ATIS, SNIPS, TOP and DSTC2. Notably, we improve the best known results on DSTC2 by up to 5 points for slot-carryover.

View on arXiv
Comments on this paper