ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.12812
25
208

TernaryBERT: Distillation-aware Ultra-low Bit BERT

27 September 2020
Wei Zhang
Lu Hou
Yichun Yin
Lifeng Shang
Xiao Chen
Xin Jiang
Qun Liu
    MQ
ArXivPDFHTML
Abstract

Transformer-based pre-training models like BERT have achieved remarkable performance in many natural language processing tasks.However, these models are both computation and memory expensive, hindering their deployment to resource-constrained devices. In this work, we propose TernaryBERT, which ternarizes the weights in a fine-tuned BERT model. Specifically, we use both approximation-based and loss-aware ternarization methods and empirically investigate the ternarization granularity of different parts of BERT. Moreover, to reduce the accuracy degradation caused by the lower capacity of low bits, we leverage the knowledge distillation technique in the training process. Experiments on the GLUE benchmark and SQuAD show that our proposed TernaryBERT outperforms the other BERT quantization methods, and even achieves comparable performance as the full-precision model while being 14.9x smaller.

View on arXiv
Comments on this paper