ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.11577
6
25

Cloud Cover Nowcasting with Deep Learning

24 September 2020
Léa Berthomier
Bruno Pradel
Lior Perez
ArXivPDFHTML
Abstract

Nowcasting is a field of meteorology which aims at forecasting weather on a short term of up to a few hours. In the meteorology landscape, this field is rather specific as it requires particular techniques, such as data extrapolation, where conventional meteorology is generally based on physical modeling. In this paper, we focus on cloud cover nowcasting, which has various application areas such as satellite shots optimisation and photovoltaic energy production forecast. Following recent deep learning successes on multiple imagery tasks, we applied deep convolutionnal neural networks on Meteosat satellite images for cloud cover nowcasting. We present the results of several architectures specialized in image segmentation and time series prediction. We selected the best models according to machine learning metrics as well as meteorological metrics. All selected architectures showed significant improvements over persistence and the well-known U-Net surpasses AROME physical model.

View on arXiv
Comments on this paper