ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.11128
38
3
v1v2 (latest)

Using Under-trained Deep Ensembles to Learn Under Extreme Label Noise

23 September 2020
K. Nikolaidis
T. Plagemann
Stein Kristiansen
V. Goebel
Mohan Kankanhalli
    NoLaUQCV
ArXiv (abs)PDFHTML
Abstract

Improper or erroneous labelling can pose a hindrance to reliable generalization for supervised learning. This can have negative consequences, especially for critical fields such as healthcare. We propose an effective new approach for learning under extreme label noise, based on under-trained deep ensembles. Each ensemble member is trained with a subset of the training data, to acquire a general overview of the decision boundary separation, without focusing on potentially erroneous details. The accumulated knowledge of the ensemble is combined to form new labels, that determine a better class separation than the original labels. A new model is trained with these labels to generalize reliably despite the label noise. We focus on a healthcare setting and extensively evaluate our approach on the task of sleep apnea detection. For comparison with related work, we additionally evaluate on the task of digit recognition. In our experiments, we observed performance improvement in accuracy from 6.7\% up-to 49.3\% for the task of digit classification and in kappa from 0.02 up-to 0.55 for the task of sleep apnea detection.

View on arXiv
Comments on this paper