ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09938
10
0
v1v2 (latest)

Is Each Layer Non-trivial in CNN?

9 September 2020
Wei Wang
Yanjie Zhu
Zhuoxu Cui
Dongyue Liang
ArXiv (abs)PDFHTML
Abstract

Convolutional neural network (CNN) models have achieved great success in many fields. With the advent of ResNet, networks used in practice are getting deeper and wider. However, is each layer non-trivial in networks? To answer this question, we trained a network on the training set, then we replace the network convolution kernels with zeros and test the result models on the test set. We compared experimental results with baseline and showed that we can reach similar or even the same performances. Although convolution kernels are the cores of networks, we demonstrate that some of them are trivial and regular in ResNet.

View on arXiv
Comments on this paper