ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09879
28
8

WESSA at SemEval-2020 Task 9: Code-Mixed Sentiment Analysis using Transformers

21 September 2020
Ahmed A. Sultan
Mahmoud Salim
Amina Gaber
Islam El Hosary
ArXivPDFHTML
Abstract

In this paper, we describe our system submitted for SemEval 2020 Task 9, Sentiment Analysis for Code-Mixed Social Media Text alongside other experiments. Our best performing system is a Transfer Learning-based model that fine-tunes "XLM-RoBERTa", a transformer-based multilingual masked language model, on monolingual English and Spanish data and Spanish-English code-mixed data. Our system outperforms the official task baseline by achieving a 70.1% average F1-Score on the official leaderboard using the test set. For later submissions, our system manages to achieve a 75.9% average F1-Score on the test set using CodaLab username "ahmed0sultan".

View on arXiv
Comments on this paper