ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09730
30
24

Multitask Pointer Network for Multi-Representational Parsing

21 September 2020
Daniel Fernández-González
Carlos Gómez-Rodríguez
ArXivPDFHTML
Abstract

We propose a transition-based approach that, by training a single model, can efficiently parse any input sentence with both constituent and dependency trees, supporting both continuous/projective and discontinuous/non-projective syntactic structures. To that end, we develop a Pointer Network architecture with two separate task-specific decoders and a common encoder, and follow a multitask learning strategy to jointly train them. The resulting quadratic system, not only becomes the first parser that can jointly produce both unrestricted constituent and dependency trees from a single model, but also proves that both syntactic formalisms can benefit from each other during training, achieving state-of-the-art accuracies in several widely-used benchmarks such as the continuous English and Chinese Penn Treebanks, as well as the discontinuous German NEGRA and TIGER datasets.

View on arXiv
Comments on this paper