Deep Reinforcement Learning Methods for Structure-Guided Processing Path Optimization

A major goal of materials design is to find material structures with desired properties and in a second step to find a processing path to reach one of these structures. In this paper, we propose and investigate a deep reinforcement learning approach for the optimization of processing paths. The goal is to find optimal processing paths in the material structure space that lead to target-structures, which have been identified beforehand to result in desired material properties. As the relation between properties and structures is generally non-unique, typically a whole set of target-structures can be identified, that lead to desired properties. Our proposed method optimizes processing paths from a start structure to one of these equivalent target-structures. The algorithm learns to find near-optimal paths by interacting with the structure-generating process. It is guided by structure descriptors as process state features and a reward signal, which is formulated based on a distance function in the structure space. The model-free reinforcement learning algorithm learns through trial and error while interacting with the process and does not rely on a priori sampled processing data. We instantiate and evaluate the proposed methods by optimizing paths of a generic metal forming process.
View on arXiv