ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09380
11
62

Hybrid Beamforming for RIS-Empowered Multi-hop Terahertz Communications: A DRL-based Method

20 September 2020
Chongwen Huang
Zhaohui Yang
G. C. Alexandropoulos
Kai Xiong
Li Wei
Chau Yuen
Zhaoyang Zhang
ArXivPDFHTML
Abstract

Wireless communication in the TeraHertz band (0.1--10 THz) is envisioned as one of the key enabling technologies for the future six generation (6G) wireless communication systems. However, very high propagation attenuations and molecular absorptions of THz frequencies often limit the signal transmission distance and coverage range. Benefited from the recent breakthrough on the reconfigurable intelligent surfaces (RIS) for realizing smart radio propagation environment, we propose a novel hybrid beamforming scheme for the multi-hop RIS-assisted communication networks to improve the coverage range at THz-band frequencies. We investigate the joint design of digital beamforming matrix at the BS and analog beamforming matrices at the RISs, by leveraging the recent advances in deep reinforcement learning (DRL) to combat the propagation loss. Simulation results show that our proposed scheme is able to improve 50\% more coverage range of THz communications compared with the benchmarks. Furthermore, it is also shown that our proposed DRL-based method is a state-of-the-art method to solve the NP-bard beamforming problem, especially when the signals at RIS-empowered THz communication networks experience multiple hops.

View on arXiv
Comments on this paper