ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08928
6
8

A Study of Genetic Algorithms for Hyperparameter Optimization of Neural Networks in Machine Translation

15 September 2020
Keshav Ganapathy
ArXivPDFHTML
Abstract

With neural networks having demonstrated their versatility and benefits, the need for their optimal performance is as prevalent as ever. A defining characteristic, hyperparameters, can greatly affect its performance. Thus engineers go through a process, tuning, to identify and implement optimal hyperparameters. That being said, excess amounts of manual effort are required for tuning network architectures, training configurations, and preprocessing settings such as Byte Pair Encoding (BPE). In this study, we propose an automatic tuning method modeled after Darwin's Survival of the Fittest Theory via a Genetic Algorithm (GA). Research results show that the proposed method, a GA, outperforms a random selection of hyperparameters.

View on arXiv
Comments on this paper