ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08457
29
14

Online Semi-Supervised Learning in Contextual Bandits with Episodic Reward

17 September 2020
Baihan Lin
    OffRL
ArXivPDFHTML
Abstract

We considered a novel practical problem of online learning with episodically revealed rewards, motivated by several real-world applications, where the contexts are nonstationary over different episodes and the reward feedbacks are not always available to the decision making agents. For this online semi-supervised learning setting, we introduced Background Episodic Reward LinUCB (BerlinUCB), a solution that easily incorporates clustering as a self-supervision module to provide useful side information when rewards are not observed. Our experiments on a variety of datasets, both in stationary and nonstationary environments of six different scenarios, demonstrated clear advantages of the proposed approach over the standard contextual bandit. Lastly, we introduced a relevant real-life example where this problem setting is especially useful.

View on arXiv
Comments on this paper