ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07634
12
8
v1v2 (latest)

Time-varying auto-regressive models for count time-series

13 September 2020
Arkaprava Roy
Sayar Karmakar
ArXiv (abs)PDFHTML
Abstract

Count-valued time series data are routinely collected in many application areas. We are particularly motivated to study the count time series of daily new cases, arising from COVID-19 spread. First, we propose a Bayesian framework to study time-varying semiparametric AR(p) model for count and then extend it to propose a time-varying INGARCH model considering the rapid changes in the spread. We calculate posterior contraction rates of the proposed Bayesian methods with respect to average Hellinger metric. Our proposed structures of the models are amenable to Hamiltonian Monte Carlo (HMC) sampling for efficient computation. We substantiate our methods by simulations that show superiority compared to some of the close existing methods. Finally we analyze the daily time series data of newly confirmed cases to study its spread through different government interventions.

View on arXiv
Comments on this paper