ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07473
28
8

Solomon at SemEval-2020 Task 11: Ensemble Architecture for Fine-Tuned Propaganda Detection in News Articles

16 September 2020
Mayank Raj
Ajay Jaiswal
R. RohitR.
Ankita Gupta
S. K. Sahoo
Vertika Srivastava
Yeon Hyang Kim
ArXiv (abs)PDFHTML
Abstract

This paper describes our system (Solomon) details and results of participation in the SemEval 2020 Task 11 "Detection of Propaganda Techniques in News Articles"\cite{DaSanMartinoSemeval20task11}. We participated in Task "Technique Classification" (TC) which is a multi-class classification task. To address the TC task, we used RoBERTa based transformer architecture for fine-tuning on the propaganda dataset. The predictions of RoBERTa were further fine-tuned by class-dependent-minority-class classifiers. A special classifier, which employs dynamically adapted Least Common Sub-sequence algorithm, is used to adapt to the intricacies of repetition class. Compared to the other participating systems, our submission is ranked 4th on the leaderboard.

View on arXiv
Comments on this paper