ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07364
20
19

An information theoretic view on selecting linguistic probes

15 September 2020
Zining Zhu
Frank Rudzicz
ArXivPDFHTML
Abstract

There is increasing interest in assessing the linguistic knowledge encoded in neural representations. A popular approach is to attach a diagnostic classifier -- or "probe" -- to perform supervised classification from internal representations. However, how to select a good probe is in debate. Hewitt and Liang (2019) showed that a high performance on diagnostic classification itself is insufficient, because it can be attributed to either "the representation being rich in knowledge", or "the probe learning the task", which Pimentel et al. (2020) challenged. We show this dichotomy is valid information-theoretically. In addition, we find that the methods to construct and select good probes proposed by the two papers, *control task* (Hewitt and Liang, 2019) and *control function* (Pimentel et al., 2020), are equivalent -- the errors of their approaches are identical (modulo irrelevant terms). Empirically, these two selection criteria lead to results that highly agree with each other.

View on arXiv
Comments on this paper