ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.06573
22
5

Themes Informed Audio-visual Correspondence Learning

14 September 2020
Runze Su
Fei Tao
Xudong Liu
Haoran Wei
Xiaorong Mei
Z. Duan
Lei Yuan
Ji Liu
Yuying Xie
ArXivPDFHTML
Abstract

The applications of short-term user-generated video (UGV), such as Snapchat, and Youtube short-term videos, booms recently, raising lots of multimodal machine learning tasks. Among them, learning the correspondence between audio and visual information from videos is a challenging one. Most previous work of the audio-visual correspondence(AVC) learning only investigated constrained videos or simple settings, which may not fit the application of UGV. In this paper, we proposed new principles for AVC and introduced a new framework to set sight of videos' themes to facilitate AVC learning. We also released the KWAI-AD-AudVis corpus which contained 85432 short advertisement videos (around 913 hours) made by users. We evaluated our proposed approach on this corpus, and it was able to outperform the baseline by 23.15% absolute difference.

View on arXiv
Comments on this paper