10
7

Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects

Abstract

Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.