33
11

A Unified Approach to Kinship Verification

Abstract

In this work, we propose a deep learning-based approach for kin verification using a unified multi-task learning scheme where all kinship classes are jointly learned. This allows us to better utilize small training sets that are typical of kin verification. We introduce a novel approach for fusing the embeddings of kin images, to avoid overfitting, which is a common issue in training such networks. An adaptive sampling scheme is derived for the training set images to resolve the inherent imbalance in kin verification datasets. A thorough ablation study exemplifies the effectivity of our approach, which is experimentally shown to outperform contemporary state-of-the-art kin verification results when applied to the Families In the Wild, FG2018, and FG2020 datasets.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.