ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.04659
14
5

Improved Robustness to Open Set Inputs via Tempered Mixup

10 September 2020
Ryne Roady
Tyler L. Hayes
Christopher Kanan
    VLM
    OOD
    AAML
ArXivPDFHTML
Abstract

Supervised classification methods often assume that evaluation data is drawn from the same distribution as training data and that all classes are present for training. However, real-world classifiers must handle inputs that are far from the training distribution including samples from unknown classes. Open set robustness refers to the ability to properly label samples from previously unseen categories as novel and avoid high-confidence, incorrect predictions. Existing approaches have focused on either novel inference methods, unique training architectures, or supplementing the training data with additional background samples. Here, we propose a simple regularization technique easily applied to existing convolutional neural network architectures that improves open set robustness without a background dataset. Our method achieves state-of-the-art results on open set classification baselines and easily scales to large-scale open set classification problems.

View on arXiv
Comments on this paper