ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.04591
11
2

Regularised Text Logistic Regression: Key Word Detection and Sentiment Classification for Online Reviews

9 September 2020
Ying Chen
Peng Liu
C. Teo
ArXivPDFHTML
Abstract

Online customer reviews have become important for managers and executives in the hospitality and catering industry who wish to obtain a comprehensive understanding of their customers' demands and expectations. We propose a Regularized Text Logistic (RTL) regression model to perform text analytics and sentiment classification on unstructured text data, which automatically identifies a set of statistically significant and operationally insightful word features, and achieves satisfactory predictive classification accuracy. We apply the RTL model to two online review datasets, Restaurant and Hotel, from TripAdvisor. Our results demonstrate satisfactory classification performance compared with alternative classifiers with a highest true positive rate of 94.9%. Moreover, RTL identifies a small set of word features, corresponding to 3% for Restaurant and 20% for Hotel, which boosts working efficiency by allowing managers to drill down into a much smaller set of important customer reviews. We also develop the consistency, sparsity and oracle property of the estimator.

View on arXiv
Comments on this paper