ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.04508
19
13
v1v2 (latest)

Narrative Maps: An Algorithmic Approach to Represent and Extract Information Narratives

9 September 2020
Brian Keith
Tanushree Mitra
ArXiv (abs)PDFHTML
Abstract

Narratives are fundamental to our perception of the world and are pervasive in all activities that involve the representation of events in time. Yet, modern online information systems do not incorporate narratives in their representation of events occurring over time. This article aims to bridge this gap, combining the theory of narrative representations with the data from modern online systems. We make three key contributions: a theory-driven computational representation of narratives, a novel extraction algorithm to obtain these representations from data, and an evaluation of our approach. In particular, given the effectiveness of visual metaphors, we employ a route map metaphor to design a narrative map representation. The narrative map representation illustrates the events and stories in the narrative as a series of landmarks and routes on the map. Each element of our representation is backed by a corresponding element from formal narrative theory, thus providing a solid theoretical background to our method. Our approach extracts the underlying graph structure of the narrative map using a novel optimization technique focused on maximizing coherence while respecting structural and coverage constraints. We showcase the effectiveness of our approach by performing a user evaluation to assess the quality of the representation, metaphor, and visualization. Evaluation results indicate that the Narrative Map representation is a powerful method to communicate complex narratives to individuals. Our findings have implications for intelligence analysts, computational journalists, and misinformation researchers.

View on arXiv
Comments on this paper