ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.04067
16
13

Noise Reduction Technique for Raman Spectrum using Deep Learning Network

9 September 2020
Liangrui Pan
Pronthep Pipitsunthonsan
Peng Zhang
C. Daengngam
Apidach Booranawong
M. Chongcheawchamnan
ArXiv (abs)PDFHTML
Abstract

In a normal indoor environment, Raman spectrum encounters noise often conceal spectrum peak, leading to difficulty in spectrum interpretation. This paper proposes deep learning (DL) based noise reduction technique for Raman spectroscopy. The proposed DL network is developed with several training and test sets of noisy Raman spectrum. The proposed technique is applied to denoise and compare the performance with different wavelet noise reduction methods. Output signal-to-noise ratio (SNR), root-mean-square error (RMSE) and mean absolute percentage error (MAPE) are the performance evaluation index. It is shown that output SNR of the proposed noise reduction technology is 10.24 dB greater than that of the wavelet noise reduction method while the RMSE and the MAPE are 292.63 and 10.09, which are much better than the proposed technique.

View on arXiv
Comments on this paper