Intracranial hemorrhages (ICHs) are life-threatening brain injures with a relatively high incidence. In this paper, the automatic algorithm for the detection and classification of ICHs, including localization, is present. The set of binary convolutional neural network-based classifiers with a designed cascade-parallel architecture is used. This automatic system may lead to a distinct decrease in the diagnostic process's duration in acute cases. An average Jaccard coefficient of 53.7 % is achieved on the data from the publicly available head CT dataset CQ500.
View on arXiv