ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.02358
21
5

Recent Trends in the Use of Deep Learning Models for Grammar Error Handling

4 September 2020
Mina Naghshnejad
Tarun Joshi
V. Nair
    VLM
ArXivPDFHTML
Abstract

Grammar error handling (GEH) is an important topic in natural language processing (NLP). GEH includes both grammar error detection and grammar error correction. Recent advances in computation systems have promoted the use of deep learning (DL) models for NLP problems such as GEH. In this survey we focus on two main DL approaches for GEH: neural machine translation models and editor models. We describe the three main stages of the pipeline for these models: data preparation, training, and inference. Additionally, we discuss different techniques to improve the performance of these models at each stage of the pipeline. We compare the performance of different models and conclude with proposed future directions.

View on arXiv
Comments on this paper