39
23

End-to-End Learning of Neuromorphic Wireless Systems for Low-Power Edge Artificial Intelligence

Abstract

This paper introduces a novel "all-spike" low-power solution for remote wireless inference that is based on neuromorphic sensing, Impulse Radio (IR), and Spiking Neural Networks (SNNs). In the proposed system, event-driven neuromorphic sensors produce asynchronous time-encoded data streams that are encoded by an SNN, whose output spiking signals are pulse modulated via IR and transmitted over general frequence-selective channels; while the receiver's inputs are obtained via hard detection of the received signals and fed to an SNN for classification. We introduce an end-to-end training procedure that treats the cascade of encoder, channel, and decoder as a probabilistic SNN-based autoencoder that implements Joint Source-Channel Coding (JSCC). The proposed system, termed NeuroJSCC, is compared to conventional synchronous frame-based and uncoded transmissions in terms of latency and accuracy. The experiments confirm that the proposed end-to-end neuromorphic edge architecture provides a promising framework for efficient and low-latency remote sensing, communication, and inference.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.