ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.01235
6
14

Quantum Discriminator for Binary Classification

2 September 2020
Prasanna Date
Wyatt Smith
ArXivPDFHTML
Abstract

Quantum computers have the unique ability to operate relatively quickly in high-dimensional spaces -- this is sought to give them a competitive advantage over classical computers. In this work, we propose a novel quantum machine learning model called the Quantum Discriminator, which leverages the ability of quantum computers to operate in the high-dimensional spaces. The quantum discriminator is trained using a quantum-classical hybrid algorithm in O(N logN) time, and inferencing is performed on a universal quantum computer in linear time. The quantum discriminator takes as input the binary features extracted from a given datum along with a prediction qubit initialized to the zero state and outputs the predicted label. We analyze its performance on the Iris data set and show that the quantum discriminator can attain 99% accuracy in simulation.

View on arXiv
Comments on this paper