ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.00874
43
16
v1v2v3v4 (latest)

A simple algorithm for global sensitivity analysis with Shapley effects

2 September 2020
T. Goda
    FAtt
ArXiv (abs)PDFHTML
Abstract

Global sensitivity analysis aims at measuring the relative importance of different variables or groups of variables for the variability of a quantity of interest. Among several sensitivity indices, so-called Shapley effects have recently gained popularity mainly because the Shapley effects for all the individual variables are summed up to the total variance, which gives a better intepretability than the classical sensitivity indices called main effects and total effects. In this paper, assuming that all the input variables are independent, we introduce a quite simple Monte Carlo algorithm to estimate the Shapley effects for all the individual variables simultaneously, which drastically simplifies the existing algorithms proposed in the literature. We present a short Matlab implementation of our algorithm and show some numerical results.

View on arXiv
Comments on this paper